

Do forages important as a source of mineral for livestock?

Objectives

 To find out mineral profile of 20 different forage varieties

• To compare the avg.mineral status of forages based on dairy production regions

Plant species

Grazing management

Concentration of mineral depends on

Stage of maturity

Climate

Season

Methodology Agro-ecological zones Dry Zone termediate Zone Net/Intermediate Zone Anuradhapura Define the study area In 3 different dairy production regions During southwest monsoon

Figure 1 – sample collected areas: A-Kotadeniyawa, B- Undugoda, C-Seeppukulama Source (Desilva and Diaz, 2011)

Results Kotadeniyawa Macro minerals Undugoda 15 Seeppukulama 14 13 12 11 10 9 8 Concentration (g/Kg DM) 0 -1 -2 -3 Grass Legumes Grass Legumes ˙Grass⊥ Legumes Grass Llegumes Calcium Potassium Magnesium Sodium Macro mineral

Figure 2- Mean macro mineral levels of grasses and legumes collected from Kotadeniyawa, Undugoda and Seeppukulama

Micro minerals

Kotadeniyawa

Figure 3- Mean Fe, Mn, Zn levels of grasses and legumes

Figure 4- Mean Cu, Co, Se, Cr levels of grasses and legumes

Statistical significance of forage mineral levels in three different dairy production zones

H_o-There is no significant difference in " X " concentration, between tested 3 zones

 $H_{\dot{\alpha}}$ -At least "X" concentration in one zone is significantly different from others

X= Ca, K, Mg, Na, Fe, Mn, Cu, Co, Se, Zn, Cr

Table 1- P values obtained for forage mineral levels in tested zones

Mineral	P value (0.05)
Calcium	0.610
Potassium	0.017
Magnesium	0.204
Sodium	0.399
Iron	0.190
Manganese	0.155
Copper	0.063
Cobalt	0.000
Selenium	0.003
Zinc	0.794
Chromium	0.616

Mineral profile of the most common forages in SL

Table 2- Mineral levels of pasture grasses

Pasture grass	Zone	Macro minerals (g/Kg DM)			Micro minerals(mg/kg DM)							
		Са	K	Mg	Na	Fe	Mn	Cu	Со	Se	Zn	Cr
	Ко	3.48 ^a ±0.95	10.9 ^a ±0.05	0.70 ±0.01	0.58 ^a ±0.01	242 ±57.1	68.1 ^a ±1.10	4.90 ^a ±1.19	0.17 ^a ±0.01	0.16 ±0.02	83.3 ^a ±10.1	0.52 ^a ±0.03
Water grass (Brachiaria mutica)	U	4.44 ^b ±0.01	10.6 ^a ±0.01	0.67 ±0.01	0.38 ^b ±0.01	175 ±20.6	43.7 ^b ±0.33	3.71 ^b ±0.42	0.25 ^b ±0.01	0.14 ±0.01	60.3 ^b ±1.95	1.08 ^b ±0.05
	Sp	0.70 ^{bc} ±0.15	9.62 ^b ±0.03	0.69 ±0.03	0.55 ^a ±0.01	146 ±25.8	49.5 ^c ±2.21	2.97 ^c ±1.58	0.27 ^{bc} ±0.01	0.15 ±0.02	93.3 ^a ±3.42	0.98 ^{bc} ±0.07
	Ко	1.78 ^a ±0.13	10.6 ^a ±0.01	0.71 ±0.01		116ª ±9.16	60.3 ^a ±2.29	6.24 ^a ±0.37	0.17 ^a ±0.02	0.16 ±0.02	84.6 ^a ±7.06	0.54 ^a ±0.02
Rusi grass (Brachiariaruziziensis)	U	4.56 ^b ±0.37	10.7 ^a ±0.01	0.73 ±0.01		113ª ±12.5	35.2 ^b ±2.28	7.54 ^{ab} ±0.33	0.21 ^b ±0.01	0.18 ±0.01	93.2 ^a ±4.00	0.70 ^{bc} ±0.04
	Sp	2.42 ^c ±0.12	9.26 ^b ±0.04	0.73 +0.04		390 ^b ±81.6	79.9 ^c ±4.77	8.34 ^b ±1.00	0.28 ^c ±0.02	0.13 ±0.03	61.3 ^b ±3.34	0.76 ^c ±0.03

Values expressed as mean ± standard deviation, Ko- Kotadeniyawa, U- Undugoda, Sp- Seeppukulama Different letters in the same column indicate significant statistical difference (P< 0.05)

Coconut triangle

Wet zone

Dry zone

Table 3- Mineral levels of common fodders

Fodders	Zone	Macro minerals (g/Kg DM)			Micro minerals (mg/Kg DM)							
		Ca	K	Mg	Na	Fe	Mn	Cu	Со	Se	Zn	Cr
CO-3	Ко	1.72 ^{ab} ±0.13	10.5 ^{ab} ±0.	0.69 ^a ±0.00	0.13 ^a ±0.01	178 ^a ±9.55	207 ^a ±3.90	9.36 ^a ±0.30	0.35 ^a ±0.05	0.17 ±0.02	36.9 ±1.61	0.49 ^a ±0.06
	U	2.71 ^a ±0.66		0.71 ^{ab} ±0.00	0.05 ^{bc} ±0.01	77.3 ^{bc} ±11.5	50.4 ^b ±5.27	8.81 ^a ±0.40	0.20 ^b ±0.01	0.16 ±0.02	34.7 ±2.69	0.54 ^a ±0.02
	Sn	1.05 ^b ±0.21		0.71 ^b ±0.01	0.05 ^c ±0.01	86.7 ^c ±12.3	20.6 ^c ±2.60	13.3 ^b ±0.39	0.28 ^{ab} ±0.03	0.13 ±0.08	51.3 ±11.4	0.82 ^b ±0.07
	KΩ	11.1 ^a ±0.32	/	0.73 ±0.01	0.25 ^a ±0.01	156 ^a ±6.36	31.8 ^a ±2.37	5.91 ^a ±0.77	0.17 ^a ±0.03	0.17 ±0.01	47.7 ^a ±4.04	0.47 ^a ±0.10
Gliricedia (<i>Gliricidia sepium</i>)	U	13.9 ^b ±0.96		0.75 ±0.02	0.02 ^b ±0.01	99.5 ^b ±9.05	34.9 ^a ±1.48	4.71 ^b ±0.06	0.24 ^b ±0.02	0.17 ±0.03	16.6 ^b ±0.11	0.61 ^b ±0.04
	Sn	15.7 ^c ±0.12		0.76 ±0.01	0.28 ^a ±0.02	195 ^c ±13.6	55.1 ^b ±2.22	6.43 ^a ±0.25	0.26 ^{bc} ±0.01	0.14 ±0.01	16.4 ^{bc} ±0.97	0.83 ^c ±0.03

Values expressed as mean ± standard deviation, Ko- Kotadeniyawa, U- Undugoda, Sp- Seeppukulama Different letters in the same column indicate significant statistical difference (P< 0.05)

	Coconut triangle		Wet zone		Dry zone
--	------------------	--	----------	--	----------

References

- De Silva, Christina & Rodríguez Díaz, Juan. (2011) 'Spatial impacts of climate change on major climatic factors in sri lanka', Sabragamuwa University Journal. Vol 10. 60-75.
- Perera, B. M. A. O. and Jayasuriya, M. C. N. (2008) 'The dairy industry in Sri Lanka: Current status and future directions for a greater role in national development', *Journal of the National Science Foundation of Sri Lanka*, 36(Special Issue), pp. 115–126. doi: 10.4038/jnsfsr.v36i0.8050.
- Ranaweera and Attapattu. (2006) cited in Ranaweera N.F.C., (2009) 'Sri Lanka: Opportunities for dairy sector growth', Smallholder dairy development: Lessons learned in Asia. Available at: http://www.fao.org/docrep/011/i0588e/I0588E08.htm (Accessed: 12 October 2020)
- Spears, J. W. (2015) 'Minerals in Forages', (January 2018), pp. 281–317. doi: 10.2134/1994.foragequality.c7.
- Suttle N.F (2010) Mineral Nutrition of Livestock, 4th Edition, MPG Book Group, UK.
- Underwood, E.J and Suttle, F. (1999) The Mineral Nutrition of Livestock. 3rd Edition CAB international,
 Wallingford.
- Weerasinghe, P. and Lanka, S. (2019) 'Livestock Feeds and Feeding Practices in Sri Lanka', *Livestock Feeds and Feeding Practices in South Asia*, (December), pp. 181–206.

